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Abstract. In this paper is presented a distributed algorithm based on Ant Sys-
tem concepls. called Combinatorial Ant System, to solve dynamic combinato-
rial oplimization problems. Our approach consists of mapping the solution
spice of thc dynamic combinatorial optimization problem in the space where
the ants will walk, and dcfining the transition probability and the pheromone
update formula of the Ant System according to the objective function of the op-
timization problem. We test our approach on a tcleccommunication problem.

1 Introduction

Real Ants are capable of finding the shortest path from a food source to their nest
without using visual cues by exploiting pheromone information [1]. While walking,
ants deposit pheromone trails on the ground and follow pheromone previously depos-
ited by other ants. The above behavior of real ants has inspired the Ants System (AS),
an algorithm in which a set of antificial ants cooperate to the solution of a problem by
exchanging information via pheromone deposited on a graph. Dorigo [2] proposed the
first AS in his Ph.D. thesis. AS has been applied to the traveling salesman problem
and quadratic assignment problem, among others combinatorial optimization problems
[1-9]. On the other hand, difterent groups have been working on various extended
versions of the AS paradigm (Ant-Q, ¢tc.) [1, §, 6].

In the AS applied to the Traveling Salesman Problem (TSP), a set of cooperating
agents, called ants, cooperate to find good solutions to TSP’s using an indirect form of
communication through pheromone trails that they deposit on the edges of the TSP
graph while building solutions. Informally, each ant constructs a TSP solution in an
constructive way: it adds new cilies 1o a partial solution by cxploiting information
gained from both past experience and a greedy heuristic. Memory takes the form of
pheromone trails deposited by ants on TSP edges, while heuristic information is sim-
ply given by the edge’s weights. There are two reasons 10 us¢ the AS on the TSP: a)
The TSP graph represents the solution space of this problem; b) The AS transition
function has goals similar to the TSP objective function.

That is not the case for other combinatorial optimization problems. We have pro-
posed a distributed algorithm based on AS concepts, called lhr.. Ct?mhinatorinl Ant
System (CAS), to solve static discrete-state combinatorial optimization problems [8,
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9]. The main novel idea introduced by our model is the definition of a gencral proce-
dure to solve Combinatorial Optimization Problems using AS. In our approach, the
graph that describes the solution space of the Combinatorial Optimization Problem is
mapped on the AS graph, and the transition function and the pheromonc update for-
mula of the AS are built according 1o the objective function of the Combinatorial
Optimization Problem. In this paper we test the CAS on dynamic combinatorial opti-
mization problems, that is, problems changing over time. Particularly, we study a
telecommunication problem. This paper is organized as follows: Scction 2 presents the
AS and the CAS. Scction 3 summarizes the experiments. Finally, conclusions of this
work are presented in Section 4.

2 Theoretical Aspects
2.1 The Routing Problem like a Dynamic Combinatorial Optimization Problem

A dynamic combinatorial optimization problem is a problem changing over time. That
is, it is a distributed time-varying problem which is a current challenger in the combi-
natorial optimization domain. The dynamic problem that we are going to study is the
routing in telecommunication networks. Routing is a mechanism that allows informa-
tion transmitted over a network to be routed from a source to a destination through a
sequence of intermediate switching/buffering stations or nodes. Routing is nccessary
because in real system not all nodes are directly connected. The problem to be solved
by any routing system is to direct traffic from sources to destinations maximizing
network performances (e.g., rate of call rejection, throughput, etc.). In real nctworks
traffic, the conditions and the structure of the network are constantly changing, for this
reason are necessary dynamic routing algorithms.

2.2 Ant Systems

In general, the behavior of Ant Colonies is impressing to perform their objective of
survival. It is derived from a process of Collective Behavior. This process is based on
the ant communication capacitics, which define the inter-relations between them.
These inter-relations permit the transmission of information that cach ant is process-
ing. The communication among agents (ants) is made through a trace, called phero-
mone. Thus, an ant leaves a certain quantity of pheromone trail when it moves. In
addition, the probability that an ant follows a path depends on the number of ants
having taken the path (a large quantity of phcromone in a path means a large probabil-
ity that it will be visited).

AS is the progenitor of all research efforts with ant algorithms and it was first ap-
plicd to the TSP problem [2, 4]. Algorithms inspired by AS have manifested as heuris-
tic methods that permit resolving combinatorial optimization problems. These algo-
rithms mainly rely on their versatility, robustness and operations based on populations.
The procedure is based on the search of agents called "ants”, that is, agents with very
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simple capabilities that try to simulate the behavior of the ants.

AS utilizes a graph representation (AS graph) where cach edge (r, s) has a desirabil-
ity measure Ys, called pheromone, which is updated at run time by artificial ants. In-
formally, the AS works as follows. Each ant generates a complete tour by choosing the
nodes according to a probabilistic state transition rule; ants prefer to move to nodes
that are connccted by short edges, which have a high pheromone presence. Once all
ants have completed their tours, a global pheromone updating rule is applicd: a frac-
tion of the phcromone evaporates on all edges, and then each ant deposits an amount
of pheromone on edges which belong to its tour in proportion to how short this tour
was. Then, we continue with a new iteration of the process.

The state transition rule used by ant system is given by the equation (1), which
gives the probability with which ant & in city » chooses to move to the city s while
building its 7* tour (transition probability from node r to node s for the ¥” ant) [1-5]:

b.oFh.F sest
PaO= 2 @I AT S, ()

0 Otherwise

Where y,(t) is the phcromone at iteration ¢, 1, is the inverse of the distance be-
tween city r and city s (d(r,s)), Ju(r) is the set of nodes that remain to be visited by ant
k positioned on node r and, B and a are two adjustable parameters which determine
the relative importance of trail intensity (Y,) versus visibility (1 4). In AS, the global
updating rule is implcmented as follows. Once all ants have built their tours, phero-
mone (that is, the trail intensity) is updated on all edges according to the equation [1-

5]
Yul)=(=pN =D+ Ay A() (2)

k=)
Where p is a cocfTicient such that (1 — p) represents the trail evaporation in one
iteration (tour), m is the number of ants, and AY*(t) is the quantity per unit of length
of trail substance laid on edge (r, s) by the k™ ant in that iteration:

Ay k @ - %,‘ 0 If edge(r,s) € tour completed by ant k
; 0

Otherwise

Where L,(1) is the length of the tour performed by ant k at iteration 1. Pheromone
updating is intended to allocate a greater amount of pheromone to shorter tours. The

general algorithm is summarized as follows:
Place the m ants randomly on the nodes of the AS graph
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Repeat until system convergence
2.1.Fori=l,n
2.1.1.Forj=1.m
2.1.1.1. Choose the node s to move to, according
to the transition probability (equation 1)
2.1.1.2. Move the ant m to the node s
2.2 Update the pheromone using the pheromone update
formula (equation 2)

2.3 The Combinatorial Ant System

There are two reasons for using AS on the TSP. First, the TSP graph can be dircctly
mapped on the AS graph. Secondly, the transition function has similar goals to the
TSP. This is not the case for other combinatorial optimization problems. In 8, 9), we
have proposed a distributed algorithm bascd on AS concepts, called the CAS, to solve
Combinatorial Optimization Problems. In our approach, we nced to define:

e  The graph that describes the solution space of the Combinatorial Optimization
Problem (COP graph). The solution space is defined by a graph where the nodes
represent partial possible solutions to the problem, and the edges the relationship
between the partial solutions. This graph will be used to define the AS graph (this
is the graph where the ants will walk).

e  The transition function and the pheromone update formula of the CAS, which are
built according to the objective function of the Combinatorial Optimization Prob-
lem.

In this way, we can solve any Combinatorial Optimization Problem. Each ant
builds a solution walking through the AS graph using a transition rulc and a phcro-
mone update formula defined according to the objective function of the Combinatorial
Optimization Problem. The main steps of CAS are:

e Build the AS graph.

e Define the transition function and pheromone update formula of the CAS.

e Exccute the classical AS procedure (or one of the improved versions).

Building the AS graph

The first step is to build the COP graph, then we define the AS graph with the same
structure of the COP graph. The AS graph has two weight matrices: the first one is
defined according to the COP graph and registers the relationship between the cle-
ments of the solution space (COP matrix). The second one registers the pheromone
trail accumulated on cach edge (phcromone matrix). This weight matrix is calcu-
lated/updated according to the pheromone update formula. When the incoming edge
weights of the pheromone matrix for a given node become high, this node has a high
probability to be visited. On the other hand, if an edge between two nodes of the COP
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matrix is low then it means that ideally if onc of these nodes belongs to the final solu-
tion then the other one must belong too. If the edge is equal to infinite then it means
that the nodes are incompatible (they can't be at the same time in a final solution).

We define a data structure 10 store the solution that every ant £ is building. This data
structure is a vector (A*) with a length equal to the length of the solution (number of

nodes that an ant must visit). For a given ant, the vector keeps each node of the AS
graph that it visits,

Defining the transition function and the pheromone update formula
The state transition rule and the pheromone update formula are built using the objec-

tive function of the combinatorial optimization problem. The transition function be-
tween nodes is given by:

T 0.CF ()T "’“/ .

Cfsa2)?

Where Cf,'_,,(:) is the cost of the partial solution that is being built by the ant &
when it crosses the edge (r, s) if it is in the position 7, z-/ is the current length of the
partial solution (current length of A*), and, a and B are two adjustablc paramecters that
control the relative weight of trail intensity (¥.(t)) and the cost function. In the CAS,
the transition probability is as follows: an ant positioned on node r choose the node s
to move according to a probability P,,‘, @ » which is calculated according to the equa-
tion given by:

Tf(T n(’)-cf:—)s (:)) If Jk
PO = 24 SOLNT) B

wct!

0 Otherwise

When B=0 we exploit previous solutions (only trail intensity is used) and when
a=0 we explore the solution space (a stochaslic greedy algorithm is obtained). A
tradeofT between quality of partial solutions and trail intensity is nccessary. The
pheromone updating rule is defined by the equation (2), where the quantity per unit of
length of trail substance laid on edge (r, s) by the k" ant in that iteration (AY,'(1)) is
calculated according to the following formula:

I/ ... Ifedge(r,s)has been crossed by ant k
Cr (1)

Avs, ()= ,
0 Otherwise
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Where C; () is the value of the cost function (objective function) of the solution
proposed by ant k at iteration . The general procedure of our approach is summarized

as follows:

1. Generation of the AS graph.
2. Definition of the state transition rule and the pheromone update formula, ac-

cording to the Combinatorial Optimization Problem.

3. Repcat until system convergence
3.1. Place the m ants on different nodes of the AS graph.

3.2. Fori=l,n
3.2.1Forj=1,m

3.2.1.1. Choose the node s to move to, according to the
transition probability (¢quation 3).
3.2.1.2. Move the ant m to the node s.
3.3 Update the pheromone using the phcromone update
formula (cquations 2 and 4).

3 Experiments
3.1 Routing Problem Resolution using the CAS

We can use our approach for point to point or point to multipoint requests. In the case
of N nodes, N ants are launched to look for the best path to the destination. For a
multipoint request with m destinations, N.m ants are launched. The source node keeps
in memory all paths that have been found by ants. Then, it chooses the best one. Fi-
nally, the path is reserved and a connection is eventually set up (in the casc of a muiti-
point request, it is spanning trecs found by ants to the multiple destination nodes
which are compared).

Building the AS graph

For this case we usc the pheromone matrix of our AS graph like the routing table of
cach node of the network. Remember that this matrix is where the pheromone trail is
deposited. Particularly, each node i has k; neighbors, is characterized by a capacity C;,
a spare S,, and by a routing table R,=[r', 4(1)}u.n.1- Each row of the routing table corre-
sponds 1o a neighbor node and each column 1o a destination node. The information of
Fach row of the node i is stored in the respective place of the pheromone matrix (p-c.,
in the position i, j if k, neighbor = j). The value r, 4(1) is used as a probability. That is,
the probability that a given ant, where the destinatior is node d, be routed from node i
to ncighbor node n. We use the COP matrix of our AS graph to describe the network
structure. If there are link or node failures, then the COP graph is modified to show
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that. In addition, in cach arc of the COP graph is stored the estimation of the trip times
from the current node i to its neighbor node j, denoted Ii={};.», 0%..,], where p,., is
the average estimated trip times from node i to node j, and 6:',.3-,' is its associated vari-
ance. T allows maintcnance a local idea of the global network’s status at node i. Fi-
nally, we definc a cost function for cvery node, called C(t), that is the cost associated
with this link. It is a dynamic variable that depends on the link’s load, and is calculated
attime rusing T,

Defining the transition function and the pheromone update formula
In our model (equation 3), C} (1) is the cost of k™ ant’s route, Ay, '(t) is the amount of

pheromone deposited by ant k if edge (i, s) belongs to the k™ ant's route (it is used to
update the routing table R; in each node), and Pi;‘ (t) is the probability that ant k

chooscs to hop from node i to node j. Ant k updates its route cost each time it trav-
erscs a link C} (1) =C; (/) + C,(1). An ant collects the experience queues and traffic

load, which allows it to define information about the state of the network. Once it has
rcached its destination node d, ant k goes all the way back to its source node through
all the nodes visited during the forward path, and updates the routing tables (phero-
mone concentration) and the set of estimations of trip times of the nodes that belong to
its path (COP graph) as follows:

e The times elapsed of the path i<>d (T;..¢) in the current k™ ant's route is uscd to
update the means and variance values of 7. T,..q gives an idea about the goodness
of the followed route because it is proportional to its length from a point of view
and from a traflic congestion point of view.

e The routing table R; is changed by incrementing the probability r..1.41) associated
with the neighbor node i-1 that belongs to the k™ ant's route and the destination
node d, and decreasing the probabilities £, 4(1) associated with other neighbor
nodces n, where n 2 i-1, for the same destination (like a pheromone trail). The val-
ues stored in T, are used to score the trip times so that they can be transformed in
a reinforcement signal r= fi(I7), re [0,1]. r is used by the current nodc i as a posi-
tive reinforcement for the node i-1:

Prg(i+1) = Pig o) (1-r)+e

And the probabilities r' 4(t) for destination d of other neighboring nodes n receive a

negative reinforcement

Paa(t1) = Pog(t) (1-7) for n #i-1

Finally, C,(t) is updated using T too
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C(t+1)= PiryT i
3.2 Result Analysis

We have tested our algorithm on a set of model networks among which is US
NSFNET-T1 (composed by 14 nodes and 21 bidirectional links, with a bandwidth of
1.5 Mbits and propagation delay with range from 4 to 20 ms). A number of diffcrent
traffic patterns, both in term of spatial and temporal characteristics, have been consid-
ercd. The network performance is expressed in throughput (dclivered bits/s) and de-
livered time from source to destination. We compare our algorithm with the AnINET
approach and the Shortest Path First algorithm (SPF) [1, 7]. Due to the space, we
present part of the result, see [9] for the rest of experiments. Figures | and 2 show
some results regarding throughput and packet delay for a Poisson temporal and ran-
dom spatial distribution of traffic (this is the traflic pattern uscd) on NSFNET. These
results are exemplar of the behavior of our algorithms, results obtained on other traflic
pattern ant network topology combinations are qualitatively equivalent (sce [9] for
more delails).

Thro‘ughnul (10“bivsec) CAS -—--
15 AnNET —
= SPF——
12
9
6 » Simulac.
200 400 600 800 1000 Time (scc)

Fig 1. Throughput comparison between the algorithms

Packet Delay (sec)
0.06

0.05

0.04

0.03 200 400 600 800 Time (scc)
Fig 2. Packet delay comparison between the algorithms

The throughput of our approach is at least as good as that AmNET and the packet
delays are much better than that of the others. Particularly, at the beginning our ap-
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proach has not the best performance because it has leamt the current network situa-
tion, elc. Afler, it can optimize the route to be chosen in an impressing way.

4 Conclusions

In this work we have presented the versatile of the CAS to solve dynamic combinato-
rial optimization problems. Our system is suited for both static discrete-state and dy-
namic combinaltorial optimization problems. This versatility has been exemplified by
the possibility of using the same model to solve diftferent combinatorial optimization
problems (static and dynamic) of various sizes. Qur approuach can be applicd to any
combinatorial optimization problems by dctining an appropriate graph representation
of the solution space of the problem considered, the dynamic procedure to update that
represcntation, and an objective function that guides our heuristic to build feasible
solutions. In our approach, the dynamic environment of the combinatorial optimiza-
tion problem is defined through the COP matrix (it form part of the space where the
ants will walk (AS graph)). Ants walk through this space according to a set of prob-
abilities updated by a state transition and a pheromone update rule defined according
1o the objective function of the combinatorial optimization problem considered.

We have tested our approach on a dynamic optimization problem (the routing prob-
lem). The results show that our approach obtains good performances, but we must
improve the execution time of a given iteration and reduce the number of iterations. In
general, CAS allows making an exhaustive searched. in this way it can obtain betler
performances than previous heuristic routing algorithms. Furthermore, we will de-
velop a parallel version of our approach, we will test our approach over other dynamic
combinatorial optimization problems. In addition, for the routing problem, we will test
with a general packet-switching network avoiding the "symmetric path costs”, and we
will develop a network failure management system based on this approach.
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